Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Traveling waves of mechanical actuation provide a versatile strategy for locomotion and transport in both natural and engineered systems across many scales. These rhythmic motor patterns are often orchestrated by systems of coupled oscillators such as beating cilia or firing neurons. Here, we show that similar motions can be realized within linear arrays of conductive particles that oscillate between biased electrodes through cycles of contact charging and electrostatic actuation. The repulsive interactions among the particles along with spatial gradients in their natural frequencies lead to phase-locked states characterized by gradients in the oscillation phase. The frequency and wavelength of these traveling waves can be specified independently by varying the applied voltage and the electrode separation. We demonstrate how traveling wave synchronization can enable the directed transport of material cargo. Our results suggest that simple energy inputs can coordinate complex motions with opportunities for soft robotics and colloidal machines.more » « less
-
Contact charge electrophoresis (CCEP) uses steady electric fields to drive the oscillatory motion of conductive particles and droplets between two or more electrodes. In contrast to traditional forms of electrophoresis and dielectrophoresis, CCEP allows for rapid and sustained particle motions driven by low-power dc voltages. These attributes make CCEP a promising mechanism for powering active components for mobile microfluidic technologies. This Feature Article describes our current understanding of CCEP as well as recent strategies to harness it for applications in microfluidics and beyond.more » « less
-
We investigate the dynamics of metallodielectric Janus particles moving via contact charge electrophoresis (CCEP) between two parallel electrodes. CCEP uses a constant voltage to repeatedly charge and actuate conductive particles within a dielectric fluid, resulting in rapid oscillatory motion between the electrodes. In addition to particle oscillations, we find that micrometer-scale Janus particles move perpendicular to the field at high speeds (up to 600 μm/s) and over large distances. We characterize particle motions and propose a mechanism based on the rotation-induced translation of the particle following charge transfer at the electrode surface. The propulsion mechanism is supported both by experiments with fluorescent particles that reveal their rotational motions and by simulations of CCEP dynamics that capture the relevant electrostatics and hydrodynamics. We also show that interactions among multiple particles can lead to repulsion, attraction, and/or cooperative motions depending on the position and phase of the respective particle oscillators. Our results demonstrate how particle asymmetries can be used to direct the motions of active colloids powered by CCEP.more » « less
-
Contact charge electrophoresis (CCEP) uses steady electric fields to drive the continuous, oscillatory motion of conductive particles and droplets between two or more electrodes. These rapid oscillations can be rectified to direct the motion of objects within microfluidic environments using low-power, dc voltage. Here, we compare high precision experimental measurements of CCEP within a microfluidic system to equally detailed theoretical predictions on the motion of a conductive particle between parallel electrodes. We use a simple, capillary microfluidic platform that combines high-speed imaging with precision electrical measurements to enable the synchronized acquisition of both the particle location and the electric current due to particle motion. The experimental results are compared to those of a theoretical model, which relies on a Stokesian dynamics approach to accurately describe both the electrostatic and hydrodynamic problems governing particle motion. We find remarkable agreement between theory and experiment, suggesting that particle motion can be accurately captured by a combination of classical electrostatics and low-Reynolds number hydrodynamics. Building on this agreement, we offer new insight into the charge transfer process that occurs when the particle nears contact with an electrode surface. In particular, we find that the particle does not make mechanical contact with the electrode but rather that charge transfer occurs at finite surface separations of >0.1 μm by means of an electric discharge through a thin lubricating film. We discuss the implications of these findings on the charging of the particle and its subsequent dynamics.more » « less
An official website of the United States government
